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Abstract

We consider the problems of computing aggregation
queries in temporal databases, and of maintaining materi-
alized temporal aggregate views efficiently. The latter prob-
lem is particularly challenging since a single data update
can cause aggregate results to change over the entire time
line. We introduce a new index structure called theSB-
tree, which incorporates features from bothsegment-trees
and B-trees. SB-trees support fast lookup of aggregate re-
sults based on time, and can be maintained efficiently when
the data changes. We also extend the basic SB-tree in-
dex to handlecumulative(also calledmoving-window) ag-
gregates. For materialized aggregate views in a temporal
database or warehouse, we propose building and maintain-
ing SB-tree indices instead of the views themselves.

1. Introduction
Temporal aggregation operatorsare included in most

temporal query languages, including TQuel [14] and
TSQL2 [13]. Due to the rapidly increasing use ofdata
warehousesto collect historical information, and the pre-
dominance of aggregation operators in analyzing this infor-
mation, temporal aggregation is an important practical issue
that has seen only moderate investigation to date (see Sec-
tion 2). The efficient implementation of temporal aggrega-
tion operations, and the efficient management of temporal
aggregateviewssuch as those found in a data warehouse,
present a number of unique challenges not found in the case
of non-temporal aggregation.

One challenge istemporal grouping, a process in which
we must group aggregate results by time. Consider for ex-
ample the tablePrescription in Table 1, which stores pre-
scription information for recipients of a certain drug. In
temporal databases, each tuple is timestamped by avalid
interval, indicating the time interval during which the tu-
ple is “alive.” EachPrescription tuple records the name of
the patient, daily dosage, and the prescription period (as the
valid interval of the tuple). Let us assume that the granular-
ity of time is one day, and for simplicity of presentation we
use integers instead of actual dates for time instants. The
contents ofPrescription are also illustrated graphically in
Figure 1. Table 2 shows the contents ofSumDosage, a
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temporal aggregate that computes the sum of active dosages
along the time line. For example, the value ofSumDosage
during the interval[15, 20) is 6, because there are three ac-
tive prescriptions (Amy, Ben, and Fay) during[15, 20), with
a total daily dosage of2+3+1 = 6. At time20, the aggre-
gate value changes to7 because Cal’s prescription becomes
active. As another example, Table 3 shows the contents of
AvgDosage, a temporal aggregate that computes the aver-
age daily dosage along the time line. Clearly, computing
these aggregate results is significantly more intricate than
aggregation without the additional time dimension.
SumDosage andAvgDosage are termedinstantaneous

temporal aggregates because the value of these aggregates
at a particular time instant is computed from the set of tu-
ples that are valid at that instant. A further challenge is
the computation ofcumulativetemporal aggregates [14]. A
cumulative temporal aggregate has an additional parameter
w called thewindow offset. The value of a cumulative ag-
gregate at time instantt is computed over all tuples whose
valid intervals overlap with the interval[t − w, t]. Intu-
itively, the result of a cumulative aggregate is a sequence
of values generated by moving a window of given length
along the time line, and evaluating the aggregate function
over all tuples that are valid in the current window. (An
instantaneous aggregate can be considered as a cumulative
aggregate with window offset0.) Table 4 shows the con-
tents ofAvgDosage5, a cumulative aggregate that com-
putes, at each point along the time line, the average of
all dosages that were active at any point within the past
5 days. As another example, Table 5 shows the contents
ofMaxDosage20, a cumulative aggregate that computes, at
each point along the time line, the maximum of all dosages
that were active at any point within the past20 days. Cumu-
lative aggregates such asAvgDosage5 andMaxDosage20
are even more complicated and expensive to compute than
the instantaneous aggregates illustrated bySumDosage and
AvgDosage earlier.

Now let us consider the problem of managing tempo-
ral aggregate views, particularly in a data warehousing con-
text [16]. First, the warehouse should be able to maintain
temporal aggregatesincrementallyas sources are updated.
The alternative approach of recomputing temporal aggre-
gates becomes progressively more inefficient as historical
data accumulates, and in some cases it may even be impos-
sible to recompute temporal aggregates because the ware-
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Table 1: Prescription .

patient dosage valid

“Amy” 2 [10, 40)
“Ben” 3 [10, 30)
“Cal” 1 [20, 40)
“Dan” 2 [5, 15)
“Eve” 4 [35, 45)
“Fay” 1 [10, 50)
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Figure 1: Graphical representation of Prescription .

house may not keep all of the historical data over which
the aggregates are defined [18]. Another problem is that
the traditional data warehousing approach of directly ma-
terializing and maintaining the view contents can be ex-
tremely inefficient for temporal aggregates. As an example,
suppose we have materialized the contents ofSumDosage

shown in Table 2. Now, suppose a tuple〈“Guy” , 5, [15, 45)〉
is inserted into base tablePrescription . To properly
updateSumDosage, we need to increment the value of
sum dosage by 5 for every tuple inSumDosage whose
valid interval is covered by[15, 45); these are the third
through the seventh tuples in Table 2. In other words, as
the result of this insertion, more than half the tuples in
SumDosage must be updated. In general, when tuples with
long valid intervals are inserted into or deleted from a base
table, it is very expensive to update the contents of a tempo-
ral aggregate view over that table.

To recap, we have identified several problems related to
temporal aggregation: (1) efficient computation ofinstan-
taneoustemporal aggregates; (2) efficient computation of
cumulativetemporal aggregates; (3) maintaining temporal
aggregate viewsincrementallyto avoid expensive recompu-
tation; and (4) the issue that even incremental maintenance
can update large fragments of a temporal aggregate view.
To address all of these problems, we introduce a new kind
of index structure called theSB-tree. SB-trees are balanced,
disk-based index structures that support fast lookups of tem-
poral aggregate values by time. SB-trees also support effi-
cient incremental updates, even when tuples with long valid
intervals are inserted or deleted. Thus, rather than materi-
alizing and maintaining temporal aggregate views directly,
we propose that SB-tree indices should be built and main-
tained instead. We also briefly outline our approach to han-
dling cumulative temporal aggregation based on variations
of SB-trees. Because of space constraints, details are pre-
sented in the full version of this paper [17].

2. Related Work
A first proposal for computing temporal aggregates was

given in [15] and was based on an extension to the non-
temporal aggregate computation algorithm from [2]. The
approach consists of two steps, each requiring one scan of
the base table. The first step determines the appropriate in-
tervals for the aggregate result tuples, i.e., the partitioning
of the time line into intervals, each with a constant aggre-
gate value. The second step considers each tuplet in the
base table in turn, updating the aggregate values for all re-
sult tuples covered byt’s valid interval. Suppose that the
size of the base table isn and the number of result tuples is
m. This approach has a worst-case running time ofO(mn),
because a base tuple with a long valid interval can poten-
tially contribute toO(m) result tuples in the second step.
Since the first step must be completed before the second
one starts, this approach does not support incremental com-
putation and maintenance of the aggregate results.

Moon et al. [10] proposed abalanced-tree algorithm
based on red-black trees for computing temporalSUM,
COUNT, andAVG aggregates. In the full paper [17], we gen-
eralize the balanced-tree algorithm so that it is not tied to
any particular data structure, and call our generalized ver-
sion theendpoint sort algorithm. The endpoint sort algo-
rithm has the advantage that it can be implemented eas-
ily in a database system since sorting can be done by the
database system without custom data structures. Both the
balanced-tree and the endpoint sort algorithms have a worst-
case running time ofO(n log(m)). For computing temporal
MIN andMAX aggregates, Moon et al. proposed amerge-sort
algorithmbased on the divide-and-conquer strategy with a
running time ofO(n log(m)). Unfortunately, none of these
O(n log(m)) algorithms supports incremental computation
or maintenance of the aggregate results.

Moon et al. also presented abucket algorithmfor tem-
poral aggregation and parallelized it on a shared-nothing ar-
chitecture. The time line is partitioned into disjoint inter-
vals, and tuples of the base table are partitioned accordingly
based on their valid intervals; those with long valid inter-
vals go into ameta array. Temporal aggregation can then
be performed independently for each interval, using any al-
gorithm. Results for all intervals are combined together and
with the meta array. This algorithm is complementary to our
approach and could be used to parallelize our algorithms.

Kline and Snodgrass [7] developed a data structure
called theaggregation treebased on the binarysegment-
tree [11]. Aggregation trees support incremental computa-
tion of temporal aggregates. In particular, their segment-
tree features allow efficient processing of tuples with long
valid intervals. This point will be discussed in detail in Sec-
tion 3, because our SB-trees also incorporate these segment-
tree features. One drawback of the aggregation tree is that
it is designed to be a main-memory data structure, which
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Table 2: SumDosage.

sum dosage valid

0 (−∞, 5)
2 [5, 10)
8 [10, 15)
6 [15, 20)
7 [20, 30)
4 [30, 35)
8 [35, 40)
5 [40, 45)
1 [45, 50)
0 [50,∞)

Table 3: AvgDosage .

avg dosage valid

NULL (−∞, 5)
2.00 [5, 30)
1.75 [30, 35)
2.00 [35, 40)
2.50 [40, 45)
1.00 [45, 50)
NULL [50,∞)

Table 4: AvgDosage5.

avg dosage valid

NULL (−∞, 5)
2.00 [5, 20)
1.75 [20, 35)
2.00 [35, 45)
2.50 [40, 50)
1.00 [50, 55)
NULL [55,∞)

Table 5: MaxDosage20.

max dosage valid

NULL (−∞, 5)
2 [5, 10)
3 [10, 35)
4 [35, 65)
1 [65, 70)
NULL [70,∞)

limits its effectiveness as a database index and as a persis-
tent data structure for maintaining temporal aggregates ina
data warehousing environment. Another problem with the
aggregation tree is that it is unbalanced. In the worst case,
it takesO(n2) to compute a temporal aggregate from a base
table withn tuples,O(n) to process an insertion into the
base table, andO(n) to perform a lookup of the aggregate
value by time. To circumvent the problem, Kline and Snod-
grass proposed a variant of the aggregation tree called the
k-ordered aggregation tree, which takes advantage of the
k-orderednessof the base table to enable garbage collec-
tion of tree nodes. However, garbage collection makes it
impossible to use the aggregate tree as an index. Moreover,
k-orderedness of a base table is difficult to measure in prac-
tice. In the worst case, the running time of thek-ordered-
aggregation-tree algorithm is stillO(n2), which could well
be the case in a data warehousing environment where tu-
ples are usually inserted in the order of their valid intervals.
Parallel versions of the aggregation-tree algorithm are de-
veloped in [19, 4], but they all inherit the same limitations
of the sequential version discussed above.

A lot of work has been done on indexing temporal
data [12, 9]. Some temporal index structures use segment-
trees. For example, Kolovson and Stonebraker [8] proposed
theSR-tree, which combines the properties of the segment-
tree and theR-tree[5]. However, segment-trees have never
been used to index and maintain temporal aggregates.

None of the related work discussed above considers cu-
mulative temporal aggregates. On the other hand, the dual
SB-tree trick we use to handle cumulative temporalSUM,
COUNT, AVG aggregates (Section 4) is quite reminiscent of
theprefix-sumapproach taken by Ho et al. [6] for computing
range queries over data cubes. Maintaining precomputed
prefix sums is expensive because each update to a cell in
the data cube has a range effect on the prefix sums; in this
sense, the two-dimensional case of the problem resembles
temporal aggregate maintenance. To reduce the cost of up-
dating prefix sums, Geffner et al. [3] proposed thedynamic
data cube. The two-dimensional case of the dynamic data
cube, called thecumulative B-tree, has similar performance
characteristics as the SB-tree. However, the cumulative B-

tree has a static structure determined by the size of the data
cube, and in essence, it only handles updates with intervals
of the form(−∞, t). In contrast, the SB-tree has a dynamic
structure, and it handles updates with arbitrary intervals.

3. Instantaneous Temporal Aggregates
Let us begin by considering instantaneous temporal ag-

gregates. We introduce our new index structure called the
SB-tree. A separate SB-tree index is used for each aggregate
we wish to compute and/or maintain. The SB-tree supports
fast lookup of aggregate values by time, fast reconstruction
of the aggregate over the entire time line, and efficient in-
cremental update of the index structure.

The SB-tree incorporates features from both the
segment-tree[11] and theB-tree[1]. The segment-tree fea-
tures ensure that the index structure can be updated effi-
ciently when base tuples with long valid intervals are in-
serted or deleted. The B-tree features ensure that the index
structure is balanced and disk-efficient. Combining these
features and adapting them to handle temporal aggregates
requires us to develop new algorithms to search, update,
balance, and compact an SB-tree. These algorithms will
be discussed in detail in this section.

Intuitively, an SB-tree contains a hierarchy of intervals
associated with partially computed aggregate results. There
are three types of nodes in an SB-tree: the root node, the
interior nodes, and the leaf nodes. All nodes have the same
size. Each SB-tree has amaximum branching factorb and a
maximum leaf capacityl which determine the layout of the
SB-tree. Typically,b and l are chosen such that each SB-
tree node fits exactly on one disk page. Here is a detailed
description of the SB-tree index structure:

• An interior node can hold up tob contiguous time in-
tervals. At least⌈ b

2
⌉ of them are actually used, i.e.,

the node must be at least half full. Suppose that in
an interior nodeN (Figure 2) we want to representj
time intervalsN.I1, N.I2, . . . , N.Ij . Thenj − 1 dis-
tinct time instants are stored inN in ascending order.
Thei-th time instant, denotedN.ti, terminates thei-th
time intervalN.Ii and starts the(i+1)-st time interval
N.Ii+1. Also, each interval inN (sayN.Ii) is associ-
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ated with apartial aggregate value(denotedN.vi) and
a pointer to a child node (denotedN.ci). For COUNT,
SUM, MIN, andMAX aggregates,N.vi is a single nu-
meric value. ForAVG, N.vi is actually a pair ofSUM
andCOUNT values, which, unlike a singleAVG value,
can be updated incrementally.

• A leaf node is similar to an interior node in structure,
except a time interval in a leaf node is not associated
with a pointer to a child node (Figure 3). A leaf node
can accommodate up tol contiguous time intervals,
where at least⌈ l

2
⌉ time intervals are actually used.

• Typically, the root node is identical to an interior node
in structure except that the root node is only required
to have at least two time intervals (and hence two child
nodes). In the special case where the root node is the
only node in an SB-tree, the root node is identical to a
leaf node in structure except that the root node is only
required to have at least one time interval.

• For any non-leaf nodeN , consider thei-th time instant
N.ti. All time instants that appear in the subtree rooted
atN.ci must be strictly less thanN.ti. All time instants
that appear in the subtree rooted atN.ci+1 must be
strictly greater thanN.ti.

As a simple example, Figure 4 shows an SB-tree index for
the aggregateSumDosage from Table 2 withb = l = 4.
Details will be discussed below, and we will see more com-
plicated examples later. Of course in practice,b andl are on
the order of hundreds given any realistic disk page size, and
l may be up to1.5 times as large asb because there are no
pointers to child nodes in leaves.

Next we provide a recursive interpretation for the time
intervals represented in SB-tree nodes that handles the non-
obvious end cases. Suppose nodeN contains a total ofj
time intervals. Consider thei-th time intervalN.Ii. The
start time ofN.Ii, denotedstart(N.Ii), is specified below:

• If i > 1, thenstart(N.Ii) = N.ti−1.

• If i = 1 andN is the root, thenstart(N.Ii) = −∞.

• If i = 1 andN has a parent nodeN ′ such thatN ′.ck =
N , thenstart(N.Ii) = start(N ′.Ik).

The end time,end(N.Ii), is specified as follows:

• If i < j, thenend(N.Ii) = N.ti.

• If i = j andN is the root, thenend(N.Ii) =∞.

• If i = j andN has a parent nodeN ′ such thatN ′.ck =
N , thenend(N.Ii) = end(N ′.Ik).

Finally,N.Ii is given by
[

start(N.Ii), end(N.Ii)
)

. For ex-
ample, in Figure 4, the first interval of nodeN0 is (−∞, 15),
the second interval ofN1 is [5, 10), the last interval ofN3
is [40, 45), and the last interval ofN4 is [50,∞).

We now identify two useful properties of SB-trees. First,
for any non-leaf nodeN , the i-th time intervalN.Ii is al-
ways the union of all time intervals inN.ci. Second, the

union of all time intervals found at the same level of an SB-
tree is always(−∞,∞), i.e., the entire time line.

3.1. Lookup
Suppose we have an SB-tree index and wish to find the

value of the temporal aggregate at a given time instant. We
search the SB-tree recursively, starting from the root, end-
ing at a leaf, and accumulating the partial aggregate values
along the way. In the following, we formally define the
SB-tree lookup functionlookup(N, t), which searches the
subtree rooted at nodeN and returns an aggregate value for
time instantt.

• In N , search for the time interval containingt. Sup-
pose that this time interval isN.Ii.

• If N is a leaf, thenlookup(N, t) = N.vi.

• If N is not a leaf, then lookup(N, t) =
accum(N.vi, lookup(N.ci, t)).

In the above,accum is a function that combines two ag-
gregate values according to the type of the aggregate. The
definition ofaccum is shown below. Recall that we treat an
AVG aggregate value as a pair ofSUM andCOUNT values.

• ForSUM andCOUNT, accum(x, y) = x+ y.

• For AVG, accum(〈xsum , xcount〉, 〈ysum , ycount〉) =
〈xsum + ysum , xcount + ycount〉.

• ForMIN, accum(x, y) = min(x, y).

• ForMAX, accum(x, y) = max(x, y).

As an example, let us look up the value of the tempo-
ral aggregateSumDosage at time instant19 using the SB-
tree in Figure 4. We start withlookup(N0, 19) at the root
nodeN0. The second interval ofN0, [15, 30), contains the
time instant19, points to nodeN2, and has value1. Hence,
lookup(N0, 19) = 1 + lookup(N2, 19), and we continue
with N2. The first interval ofN2, [15, 20), contains19 and
has value5. SinceN2 is a leaf,lookup(N2, 19) = 5, so
lookup(N0, 19) = 1 + 5 = 6.

The SB-tree lookup function differs from B-tree lookup
in that the result is not stored in one place; instead, the re-
sult must be calculated from the values stored in all nodes
along the path from the root to the leaf. The additional cal-
culation required does not increase the overall complexity
of the lookup function: Both SB-tree and B-tree lookups
have a running time ofO(h), whereh is the height of the
tree.

3.2. Range Queries and Aggregate Reconstruction
An SB-tree index also can be used to answer range

queries. In a range query, we are interested in the value of
the temporal aggregate over a given time intervalI. Since
the aggregate value may change over time, the result of a
range query is a table of tuples, where each tuple consists
of an aggregate value and a subinterval ofI. (This result
is similar to the complete aggregate, e.g., Table 2, exceptI
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N.vj−1 N.vjN.v1 N.v2 N.v3

N.t1 N.t2 N.tj−1

N.c1 N.c2 N.c3 N.cj−1 N.cj

· · ·

· · ·

Figure 2: An interior node.

N.vj−1 N.vjN.v1 N.v2 N.v3

N.t1 N.t2 N.tj−1· · ·

· · ·

Figure 3: A leaf node.
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Figure 4: SB-tree for SumDosage.

need not be the entire time line.) To answer a range query,
we perform a depth-first traversal (DFT) of the SB-tree to
reach all leaf nodes containing time intervals that intersect
with I. In the following, we formally define the procedure
range(N, I, v), which outputs the aggregate values together
with their valid intervals during the time intervalI for the
subtree rooted at nodeN . The third parameterv is used to
pass partially calculated aggregate values to recursive calls.

• If N is a leaf, then for eachi such thatN.Ii ∩ I 6= ∅,
output〈accum(N.vi, v), N.Ii ∩ I〉.

• If N is not a leaf, then for eachi such thatN.Ii ∩ I 6=
∅, call range(N.ci, I, accum(N.vi, v)).

In order to answer a range query over time intervalI us-
ing an SB-tree rooted at nodeN0, we start with the call
range(N0, I, v0), wherev0 is an initial value defined ac-
cording to the aggregate type:1 ForSUM andCOUNT, v0 = 0;
for AVG, v0 = 〈0, 0〉; for MIN andMAX, v0 = NULL. The spe-
cial valueNULL has the the property thataccum(NULL, x) =
accum(x, NULL) = x for anyx.

For example, when executed on the SB-tree in Fig-
ure 4,range(N0, [14, 28), 0) returns the value of the tempo-
ral aggregateSumDosage during [14, 28). The nodes tra-
versed byrange areN0, N1, andN2. The output contains
〈8, [14, 15)〉, 〈6, [15, 20)〉, and〈7, [20, 28)〉, which correctly
corresponds to Table 2.

To reconstruct the entire temporal aggregate from an
SB-tree index, we simply run a range query usingI =
(−∞,∞), which amounts to a DFT of the entire SB-
tree. As an example, for the SB-tree in Figure 4,
range(N0, (−∞,∞), 0) returns the contents of the tempo-
ral aggregateSumDosage as shown in Table 2.

Range queries on SB-trees are processed differently
from those on B-trees. Recall that in a B-tree (actually
a B+-tree to be specific), leaves are linked together in a
sequence by pointers. To process a range query, we first
search for the leaf containing the lower bound of the given
range, and then follow pointers to find subsequent leaves
within the range. The result values are all stored in leaves.
In an SB-tree, however, result values cannot be obtained di-
rectly from the leaves; they must be calculated along the
paths starting from the root. Therefore, we must use a DFT,
which is why there is no need to link the leaves of an SB-
tree together by pointers. Note that the DFT poses very little
overhead in range query processing, especially whenb and

1It is also acceptable to definev0 = NULL for SUM. In that case, if there
is no base tuple valid at time instantt, the value ofSUM at t will be NULL
instead of0. This change will not affect any of our algorithms.

l are large. The running time ofrange is proportional to the
number of nodes traversed in the DFT, which is bounded by
O(h + r), whereh is the height of the SB-tree andr is the
number of leaves that intersect with the given interval. In
other words, SB-tree range queries have the same asymp-
totic running time as B-tree range queries. As a corollary,
the time required to reconstruct the entire temporal aggre-
gate from an SB-tree is linear in the size of the aggregate.

3.3. Insertion
Whenever a tuple is inserted into a base table, we need

to update the SB-tree index for any temporal aggregate de-
fined over this base table. Recall that the SB-tree indexes
the aggregate and not the base table. Hence, unlike an in-
sertion into a B-tree, which typically results in an additional
entry in the tree for the new tuple, an insertion usually re-
sults in updates to various parts of the SB-tree, which reflect
the effect of the new base tuple on the aggregate.

Consider inserting a tuplet into a base table. Suppose
that the value oft’s aggregated attribute isvbase , andt is
valid during the time intervalI. The effect of this insertion
on an aggregate can be captured by a pair〈v, I〉, wherev is
defined according to the type of the aggregate: ForSUM,
MIN, and MAX, v = vbase ; for COUNT, v = 1; for AVG,
v = 〈vbase , 1〉. In the following, we formally define the pro-
cedureinsert(N, 〈v, I〉), which updates the subtree rooted
at nodeN in order to process an insertion whose effect on
the aggregate is〈v, I〉. For eachi such thatN.Ii ∩ I 6= ∅:

◦ If N.vi = accum(v,N.vi), do nothing.

◦ Otherwise, ifN.Ii ⊆ I, setN.vi to accum(v,N.vi).

◦ Otherwise,N.Ii 6⊆ I.

⋄ If N is not a leaf, callinsert(N.ci, 〈v, I〉).

⋄ If N is a leaf, updateN to reflect the effect of
〈v, I〉.

There are a number of subtleties in the above procedure.
First, note that the recursion stops beforeN.ci if the inser-
tion has no effect onN.vi. This check is primarily forMIN
andMAX aggregates. In the case ofMIN, for example,N.vi
is an upper bound for the aggregate value during the inter-
valN.Ii, because a lookup of the aggregate value anywhere
duringN.Ii will pass throughN and seeN.vi. Therefore,
if v is already greater thanN.vi, the insertion cannot have
any effect on the subtree rooted atN.ci. The case ofMAX
is symmetric. This check can eliminate many unnecessary
recursive steps from theinsert procedure.

Second, note that ifN.Ii is contained inI, we simply
updateN.vi and then stop, without further recursing down
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N.ci. Both lookup andrange still can see the effect of this
insertion because they accumulate all partial aggregate val-
ues along the path of traversal. This feature of the SB-tree,
borrowed from the segment-tree, ensures that tuples with
long valid intervals can be inserted efficiently. For example,
if we insert tuple〈“Guy” , 5, [15, 45)〉 into thePrescription
table in Table 1, onlyN0.v1 andN0.v2 in Figure 4 need to
be incremented by5. Without this segment-tree feature, ev-
ery leaf interval inN1 andN2 would need to be updated.
The saving may seem insignificant for this simple example,
but for larger, more realistic examples, the saving will be
quite substantial if we can avoid updating entire subtrees.

The last line of theinsert procedure, updating a
leaf, is best illustrated with an example. If we insert
〈“Hal” , 1, [24, 30)〉 intoPrescription , nodeN2 in Figure 4
will contain one more interval. The old intervalN2.I2 =
[20, 30) with valueN1.v2 = 6 will be divided into two in-
tervals:[20, 24)with value6, and[24, 30)with value7. Had
we inserted〈“Hal” , 1, [24, 28)〉 instead,N2.I2 would be di-
vided into three intervals:[20, 24) with value 6, [24, 28)
with value7, and[28, 30)with value6. In general, an inser-
tion can result in up to two more intervals in a leaf, possibly
causing the leaf to overflow. In Section 3.5, we will show
how to split nodes in order to deal with overflows.

As a slightly more complicated example, suppose that
we insert〈“Ida” , 1, [17, 47)〉 into Prescription . We exe-
cute insert(N0, 〈1, [17, 47)〉) on the SB-tree in Figure 4.
At nodeN0, we examine the three intervalsN0.I2, N0.I3,
andN0.I4, which overlap with[14, 47). N0.I2 = [15, 29)
is not completely covered by[17, 47), so we continue with
insert(N2, 〈1, [17, 47)〉). N0.I3 = [30, 45) is completely
covered by[17, 47), so we simply incrementN0.v3 by 1.
N0.I4 = [45,∞) is not completely covered by[17, 47), so
we continue withinsert(N4, 〈1, [17, 47)〉). We omit the de-
tails of callinginsert onN2 andN4. The resulting SB-tree
is shown in Figure 5.

All nodes examined byinsert(N, 〈v, I〉) lie either on the
path from the root to the node covering the beginning ofI,
or on the path from the root to the node covering the end
of I. Any node outside the region bounded by these two
paths need not be examined because it contains no intervals
that overlap withI. Any node within the region bounded
by the two paths need not be examined either, because all
its intervals are completely covered by some interval in an
ancestor node that lies on one of the two paths. Therefore,
the running time ofinsert is O(h), whereh is the height
of the SB-tree. This analysis does not yet take node split-
ting into account; a thorough analysis will be provided in
Section 3.6.2.

3.4. Deletion
It is well known thatMIN andMAX aggregates in general

are not incrementally maintainable when tuples are deleted
from the base table, a problem that is not specific to tempo-

ral aggregates. Hence, in this section, we focus on how to
handle deletions forSUM, COUNT, andAVG aggregates.

The technique is simply to treat a deletion as an insertion
with a “negative” effect on the aggregate value. Consider
deleting a tuplet from a base table. Suppose that the value
of t’s aggregated attribute isvbase , andt is valid during the
time intervalI. The effect of this deletion on an aggregate
can be captured by a pair〈v, I〉, wherev is defined accord-
ing to the type of the aggregate: ForSUM, v = −vbase ; for
COUNT, v = −1; for AVG, v = 〈−vbase ,−1〉. Then, the
deletion is handled by callinginsert(N, 〈v, I〉), whereN
is the root of the SB-tree to be updated. As we have seen
in Section 3.3, the running time of this procedure isO(h),
whereh is the height of the SB-tree.

For example, consider deleting〈“Ida” , 1, [17, 47)〉which
we just inserted intoPrescription in Section 3.3. Follow-
ing the procedureinsert(N0, 〈−1, [17, 47)〉) on the SB-tree
in Figure 5, we obtain the SB-tree in Figure 6. Notice that
Figure 6 is not identical to Figure 4, the SB-tree before the
insertion and the deletion. In particular, the first and the
second intervals ofN2 in Figure 6 have the same aggre-
gate value; so do the first and the second intervals ofN4.
These adjacent intervals with equal aggregate values can
and should be merged. In Section 3.6, we will show how
to merge such intervals to compact the SB-tree.

3.5. Node Splitting

As we have seen in Section 3.3, a leaf may become one
or two intervals too full as the result of an insertion. When
overflow occurs, we split the leaf into two leaves, each of
which is roughly half full. Then, we need to split the cor-
responding interval in the parent node into two intervals,
and associate them with the two new leaves. As a conse-
quence, the parent node could overflow, so we may need to
continue the splitting process up the SB-tree. Finally, if the
root overflows, we split it into two and create a new root to
point to them. The detailed node splitting proceduresplit is
specified in the full version of this paper [17].

For example, consider executinginsert(N0, 〈1, [7, 12)〉)
on the SB-tree in Figure 4. The resulting SB-tree before any
node splitting is shown in Figure 7. NodeN1 overflows, so
we splitN1 into N11 andN12, and we also split the first
interval ofN0 at time instant10. The resulting SB-tree is
shown in Figure 8. NowN0 overflows. Hence, we further
splitN0 intoN01 andN02, and then create a new rootN ′0 to
point toN01 andN02. The final result is shown in Figure 9.

Thesplit procedure is invoked for each overflowing leaf
in the SB-tree after an insertion or a deletion. Each insertion
or deletion can cause at most two leaves to overflow. Since
all splitted nodes must lie on the same path from the root,
the running time ofsplit is O(h), whereh is the height of
the SB-tree. Becauseinsert itself takesO(h), the overall
time to process an insertion or a deletion is stillO(h).
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3.6. Interval and Node Merging

At this point, it might appear that we have complete pro-
cedures to handle insertions and deletions, but in fact one
subtlety remains. Both insertions and deletions are handled
by insert andsplit , neither of which ever shrinks the SB-
tree. A monotonically growing SB-tree is certainly unac-
ceptable; we need a way of compacting it.

In Section 3.4, we saw that a deletion may result in two
adjacent leaf intervals with equal aggregate values (Fig-
ure 6). In fact, an insertion could produce the same effect.
For instance, in the example of Section 3.4, we could have
inserted a tuple〈“Jay”,−1, [17, 47)〉 into Prescription in-
stead of deleting the tuple〈“Ida” , 1, [17, 47)〉 and obtained
exactly the same SB-tree as in Figure 6. We can merge ad-
jacent intervals with equal aggregate values, at which point
a node may become less than half full. To deal with an un-
derfull node, we can either move intervals from its sibling
or merge it with its sibling.

The interval merging procedureimerge is used to merge
two adjacent leaf intervals with equal aggregate values. The
detailedimerge procedure is specified in the full paper [17].
The two adjacent intervals may belong to the same leaf, in
which case they have equal aggregate values if and only if
they have equal partial aggregate values in the leaf. The
second case is more complicated: One interval is the last
in a leaf, and the other interval is the first in the next leaf.
In this case, we must start from their common ancestor and

traverse down to these two intervals, accumulating the par-
tial aggregate values along the two paths respectively. If
the two results are equal, then the two intervals have equal
aggregate values. There is no need to check any partial ag-
gregate values above the common ancestor because they are
shared by both leaf intervals.

The imerge procedure results in a leaf with one fewer
interval. If this leaf has become less than half full, we call
the node merging procedurenmerge. In general, if a non-
root nodeN is less than half full,nmerge(N) attempts to
move an interval from a sibling that contains more than the
minimum number of intervals. If no sibling ofN has a
“spare” interval,nmerge(N) will mergeN with a sibling,
and then merge their corresponding intervals in their parent
node. As a result, the parent node could become under-
full, so we may need to continue the process up the SB-tree.
Finally, we may remove the root if it only has one inter-
val left. Although this high-level description ofnmerge is
short, the details are quite involved because we must ma-
nipulate partial aggregate values stored in the interior nodes
carefully in order to ensure that every transformation of the
SB-tree preserves the value returned bylookup along every
path. Again, because of space constraints, the procedure
nmerge(N) is specified in full in [17].

As a simple example, consider the SB-tree in Figure 6.
We runimerge twice, first on the first and the second inter-
vals ofN2, and then on the first and the second intervals of
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N4. The final result is identical to the SB-tree in Figure 4.
In this example,nmerge is not needed.

As a more complicated example, let us continue with the
example in Section 3.5. First, we delete the newly inserted
tuple by runninginsert(N0, 〈−1, [7, 12)〉) on the SB-tree in
Figure 9; the result is shown in Figure 10. We callimerge
for the second and the third intervals ofN11, and for the first
and the second intervals ofN12, since they are pairs of adja-
cent intervals with equal aggregate values. Figure 11 shows
the state of the SB-tree right before we callnmerge(N12)
because nodeN12 has become too small. Since both sib-
lings ofN12 contain no spare intervals,nmerge(N12) pro-
ceeds to mergeN12 with one of its siblings, sayN2, into a
new nodeN ′2. At the same time, it merges the second and
the third intervals of the parent nodeN01. The final result
is shown in Figure 12. Notice that the SB-tree in Figure 12
is not identical to the one we started with in Figure 4. Nev-
ertheless, they encode exactly the same aggregate.

More comprehensive examples can be found in [17]. If
we remove all tuples that have been inserted into the base
table, the SB-tree will eventually become empty through
interval and node merging. In general, an empty SB-tree
only has a root node containing a single interval(−∞,∞)
with an initial aggregate valuev0 as defined in Section 3.2.

3.6.1. When to Compact
A compact SB-tree has the property that no two adja-

cent leaf intervals have the same aggregate value. In other
words, if we performrange on a compacted SB-tree over
(−∞,∞), we will get a “normalized” result that cannot
be represented by fewer tuples (without overlapping inter-
vals). On the other hand, if an SB-tree is not compact, it
will contain more leaf intervals than necessary, andrange
over(−∞,∞)will output consecutive tuples with equal ag-
gregate values. A compact SB-tree is desirable because its
(potentially) lower height leads to more efficient operations.

Ideally, to ensure the compactness of an SB-tree after an
insertion or deletion, we should performimerge for each
pair of adjacent leaf intervals with equal aggregate values.
First, we must be able to detect such intervals. Recall that
in order to calculate the aggregate value for a leaf interval,
we must traverse all the way down to the leaf. LetI denote
the interval affected by the insertion or deletion. If we check
every leaf interval that intersects withI, the overhead would
completely negate the advantage of segment-tree features in
handling base tuples with long valid intervals. To avoid this
problem, we take one of two approaches depending on the
type of the aggregate.

ForSUM, COUNT, andAVG, I ’s two endpoints will become
interval endpoints in the SB-tree, and it suffices to check the
two pairs of leaf intervals surroundingI ’s two endpoints.
Usually, each pair belongs to a single leaf, in which case
we only need to compare the partial aggregate values in the
leaf. In the worst case, two intervals in a pair may lie on

two almost disjoint paths from the root, so the time it takes
to perform the check isO(h), whereh is the height of the
SB-tree. There is no need to check intervals withinI: If
two adjacent intervals withinI had different aggregate val-
ues before the update, then they must have different aggre-
gate values after the update, because all aggregate values
within I are incremented or decremented uniformly by the
update. Since the common case carries very little overhead
and the worst case does not increase the asymptotic com-
plexity of the update operation, we can afford to keep the
SB-tree compact at all times forSUM, COUNT, andAVG.

ForMIN andMAX, it is possible for any two adjacent leaf
intervals to have equal aggregate values after an update. For
example, two adjacent leaf intervals withMIN values2 and
3, respectively, will be updated to have the sameMIN value
of 1when we insert a tuple with value1whose valid interval
covers both of the leaf intervals. We still want to avoid the
overhead of checking every leaf interval withinI. There-
fore, instead of callingimerge after everyinsert call on a
MIN or MAX SB-tree, we periodically compact the SB-tree
with a batch procedurebmerge. This procedure performs
range on the SB-tree over(−∞,∞), and combines output
tuples with equal aggregate values and adjacent valid inter-
vals. As soon asbmerge generates a tuple, it inserts the tu-
ple into a second, initially empty SB-tree, which eventually
replaces the original SB-tree as the index for the aggregate.

3.6.2. Complete Update Running Time

For SUM, COUNT, and AVG, the complete SB-tree up-
date procedure includes calls toinsert , split , and/or
imerge/nmerge for up to two pairs of adjacent intervals.
Both insert andsplit have a running time ofO(h), where
h is the height of the SB-tree. As we have shown in Sec-
tion 3.6.1, checking for adjacent intervals with equal aggre-
gate values requiresO(h). The running time of interval and
node merging is dominated by the running time ofnmerge,
which is alsoO(h) because the height of the tree limits the
depth of the recursion innmerge. In summary, the com-
plete procedure takesO(h). Furthermore, since the SB-tree
is kept compact at all times,O(h) = O(logm), wherem is
the number of tuples in the normalized aggregate result.

For MIN andMAX, each SB-tree update, including calls
to insert andsplit but notimerge/nmerge, still has a run-
ning time ofO(h). Since the SB-tree is not kept compact
at all times, in the worst caseO(h) = O(log n), wheren
is the total number ofinsert calls performed on the SB-tree
(or, equivalently, the size of the base table; recall that wedo
not handle deletions forMIN andMAX aggregates). Note that
O(log n) is not as efficient asO(logm) because the num-
ber of tuples in the aggregate result might be significantly
less than the number of tuples in the base table. A possible
optimization is to compact the SB-tree periodically using
bmerge, whose running time isO(n +m logm).
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4. Cumulative Temporal Aggregates
In this section we briefly outline our approach to han-

dling cumulative temporal aggregates. For details, please
refer to the full version of this paper [17]. Recall from
Section 1 that a cumulative temporal aggregate is computed
with an additional parameterw, for window offset. Ifw is
fixed and known in advance, the solution is straightforward.
We keep a separate SB-tree for the particular value ofw.
This SB-tree operates exactly like a regular SB-tree, except
that an insertion with effect〈v, I〉 on an instantaneous ag-
gregate, whereI = [Istart , Iend ), is treated as an insertion
with effect〈v, [Istart , Iend + w)〉.

Supporting cumulative aggregates with arbitrary window
offsets is more challenging. ForSUM, COUNT, andAVG, we
use a solution calleddual SB-trees. The solution maintains
a second SB-treeT ′ (rooted atN ′), in addition to the SB-
treeT (rooted atN ) for the instantaneous aggregate. Recall
thatlookup(N, t) returns an aggregate value computed over
all base tuples that are valid at time instantt. We construct
T ′ in such a way thatlookup(N ′, t) returns an aggregate
value computed over all tuples that are valid strictly before
t. Then, the value of the cumulative aggregate with win-
dow offsetw at time t can be computed as the difference
betweenlookup(N ′, t) andlookup(N ′, t−w), adjusted by
lookup(N, t). The details of this and other operations on
dual SB-trees can be found in [17]. In [17] we also consider
an alternative called theJSB-tree, which provides interest-
ing performance trade-offs with dual SB-trees.

Unlike SUM, COUNT, andAVG, it is possible to compute
a cumulativeMIN or MAX aggregate with arbitrary window
offset from the SB-tree constructed for the corresponding
instantaneous aggregate. To find the value of the cumula-
tive aggregate with window offsetw at time instantt, we
simply call range(N, [t − w, t], v0), wherev0 is the value
defined in Section 3.2; the answer we are looking for is the
MIN or MAX value of all the output tuples. Whenw is large,
however, this lookup operation may be too slow. To reduce
the cost of lookup, we can store and maintainMIN or MAX
values for subtrees inside non-leaf nodes. We call the result-
ing new index structure anMSB-tree(for MIN/MAXSB-tree),
described in detail in [17].

Compared to the basic SB-tree, dual SB-trees and MSB-
trees require only a small, constant factor more storage and
running time for their operations, and they are able to han-
dle cumulative aggregates with arbitrary window offsets not
known in advance.

5. Conclusion

We have presented a new index structure for temporal
aggregation called the SB-tree. SB-trees and their vari-
ants provide a number of improvements over previous ap-
proaches to implementing temporal aggregates. In Table 6,
we compare our algorithms with the other temporal aggre-
gation algorithms discussed in Section 2. For simplicity,
Table 6 provides only rough upper bounds on the running
time; please refer to corresponding sections or the full pa-
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Table 6: Comparison of temporal aggregation algorithms ( n is the size of the base table).

aggregates
handled

memory-based
or disk-based

time to
compute
full aggregate

incrementally
maintainable
(update time)

usable as index
(lookup time)

support for
cumulative
aggregates

basic [15] all disk O(n2) no no no
balanced tree [10] SUM/COUNT/AVG memory O(n logn) no no no
endpoint sort
(see full version [17])

SUM/COUNT/AVG disk O(n logn) no no no

merge sort [10] MIN/MAX disk O(n logn) no no no
aggregation tree [7] all memory O(n2) O(n) O(n)

(no if k-ordered)
no

SB-tree
(Sections 3 and 4)

all disk O(n logn) O(logn) O(logn) fixed
window offset

dual SB-trees
(Section 4)

SUM/COUNT/AVG disk O(n logn) O(logn) O(logn) arbitrary
window offset

MSB-tree
(Section 4)

MIN/MAX disk O(n logn) O(logn) O(logn) arbitrary
window offset

per [17] for detailed analyses.
As future work, we plan to implement the SB-tree and

its variants and measure their performance with real-world
applications. We also plan to consider concurrency control
algorithms for these index structures.
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